Ankur Singh

Research Engineer @ A*STAR

Indian Institute of Technology, Kanpur

in: Linkedin | Ω : Github

Academic Qualifications

Year	Degree	Institute
Aug 2020 - Sep 2021	M.Tech, Electrical Engineering	Indian Institute of Technology, Kanpur
Aug 2016 - July 2020	B.Tech, Electrical Engineering	Indian Institute of Technology, Kanpur
March 2015	AISSCE	Air Force School, Viman Nagar, Pune
March 2013	AISSE	Air Force School, Viman Nagar, Pune

Research Interests

• Deep Learning, Computer vision, Domain Generalization, Incremental Learning, Self-Supervised Learning

Scholastic Achievements

- Secured All India Rank 636 in IIT-JEE Advanced 2016 (99.682 percentile)
- Secured 99.18 percentile in JEE Mains 2016
- Holder of Prime Minister Scholarship

Publications

- Multi-Input Fusion for Practical Pedestrian Intention Prediction , Ankur Singh, Upendra Suddamalla .
 - Accepted at ICCV Workshops 2021 [Link]
- The Curious Case of Convex Networks , Sarath Sivaprasad, Ankur Singh, Naresh Manwani, Vineet Gandhi.
 - Accepted at ECML 2021 [Link]
- Pedestrian Intention Prediction with Multi-Input Concatenation, Ankur Singh, Upendra Suddamalla.
 - Accepted at CVPR Workshops 2021 [Link]
- CT Image Synthesis Using Weakly Supervised Segmentation and Geometric Inter-Label Relations For COVID Image Analysis, Dwarikanath Mahapatra, Ankur Singh, Behzad Bozorgtabar. Under Review at MedIA [Link]
- Semi-Supervised Super-Resolution, Ankur Singh, Piyush Rai. Preprint [Link]
- Video Colorization using CNNs and Keyframes Extraction: An application in saving bandwidth, Ankur Singh, Anurag Chanani, Harish Karnick. Accepted at CVIP 2019 Oral [Link].

Experience

• Research Engineer with A*STAR, Singapore Domain Generalization, Continual Learning

(Sep '22-)

- Implemented knowledge distillation techniques to design generalizable neural networks for image classification tasks
- Designed an evolving fully connected networks for addressing continual learning problems in time-series data
- Perception Engineer with Moovita Singapore Multi-Task Learning

(Oct' 21-Sep '22)

- Developed and trained a novel Multi-Task Network (MTN) capable of lane segmentation and object detection.
- Generated a dataset of 15,000 images with lane markings to train a computer vision model for autonomous driving
- Introduced lane instance segmentation in multi-task network, improving lane segmentation.
- Consultant with Moovita Singapore

(Sep' 20-Oct' 21)

Pedestrian Intention Estimation (ICCV W '21 [Link], CVPR W '21 [Link])

- Proposed an intention prediction network that utilizes pedestrian bounding boxes, pose, bounding box coordinates.
- The network implicitly learned pedestrians' motion cues and location information to differentiate between intentions.
- Experimented with different combinations of input features and proposed multiple efficient models.
- M.Tech thesis with Prof. Piyush Rai, Prof. Vipul Arora, IIT Kanpur Semi-Supervised Super Resolution [Link]

(Sep' 20-Sep' 21)

- Introduced a semi-supervised approach to tackle the problem of Single-Image Super-Resolution using ESRGANs.
- Proposed a consistency loss to convert unpaired low-resolution images to high-resolution images.
- Proved the efficacy of the proposed approach over other methods through quantitative and qualitative experiments.

• Research Assitant with Prof. Vineet Gandhi, IIIT Hyderabad Convex Neural Networks (ECML '21 [Link]) (Aug' 20-Nov '20)

- Investigated a constrained formulation of neural networks where the output is a convex function of the input.
- Showed that these networks have outstanding generalization ability and robustness to label noise
- Experiments showed that convex MLP networks outperform vanilla MLP on standard image classification datasets

• Research Assitant with Dr. Dwarikanath Mahapatra, Inception Institute of AI Medical Imaging for Covid Image Analysis [Link]

(April '20-July '20)

- Generated synthetic images to train networks for segmenting COVID-19 infected areas from lung CT images.
- Introduced a weakly supervised segmentation (WSS) step that segments a CT image into different labeled regions.
- The generated segmentation maps are used to model the geometric relationship between the different pathological regions.

• Research Assistant with Prof. Vinay Namboodiri, IIT Kanpur Adversarial Incremental Learning [Link]

(May '19-Nov '19)

- Formulated an approach using Adversarial Learning to tackle class-incremental learning in image classification.
- The proposed model neither used exemplars nor any generative examples to preserve information about the old tasks.
- Obtained state of the art results in class-incremental learning on CIFAR-100, MNIST and SVHN datasets.

• Research Assistant with Prof. Harish Karnick, IIT Kanpur Video Colorization (CVIP '19 Oral [Link])

(Aug '18-Nov '18)

- Developed an end to end framework that extracts key frames from a colored video and trains a Convolutional Neural Network from scratch on these colored frames.
- Saved **two thirds** of bandwidth while transmitting a video using the proposed method.
- The whole process starting from key frames extraction to training a model and then obtaining the colored output video, happened in **near real-time** using the proposed method.

• Intern with Vios Medical, Bangalore

(May '18-July '18)

ECG arrhythmia classification using 2D CNN [Link]

- Used **2-Dimensional CNNs** instead of the traditional LSTM models to detect arrhythmia in ECG signals.
- Achieved an accuracy of **98.31** in classifying 6 different types of arrhythmia using different classification networks
- Github Repository of the project currently has 215 stars and 103 forks

Other Projects

• Medical Imaging for Breast Cancer detection

(Apr '20-May '20)

- Worked on BACH Grand Challenge for Computer Aided Detection of Breast Cancer from medical images.
- Utilized self-supervised learning techniques to pre-train networks for improved performance on limited medical data.
- Achieved a test set accuracy of 89% through the implementation of the self-supervised learning technique

• GANs (Apr' 20)

- Conducted a literature survey on different GANs including Least Squares GANs, Cycle GANs, and SR GANs.
- Implemented Least Squares GANs, Cycle GANs, and Super-Resolution GANs using Pytorch.

• Self-Supervised Learning

(Aug '19-Nov '19)

- Conducted a literature review on various self-supervised learning techniques utilizing different pretext tasks.
- Experimented with various pretext tasks, including predicting image rotations and edge-detection.

• Hierarchical Face localization and Drowsiness detection

(Dec '18)

- Developed an efficient method for hierarchical face localization and drowsiness detection, with near-realtime processing.
- Applied temporal analysis techniques to video data for accurate drowsiness detection.

• Word Boundary detection

(Aug '18 - Nov '18)

- Implemented the use of MFCC vectors and spectrograms to identify word boundaries in speech data.
- Utilized convolutional neural networks to spectrogram data for word boundary detection.

• Tweets Classification

(Dec'17)

- Employed LSTM and Bidirectional LSTM techniques to classify tweets mentioning personal intake of medicine on Twitter.
- Used self trained word embedding models to pre process the tweets using Word2Vec.

Technical Skills

- Programming Languages: Python, C++, Matlab
- Machine Learning Tools: Pytorch, Keras, Tensorflow, Sklearn, Numpy, OpenCV, Pandas, NLTK, Matplotlib, PIL